Text Models (LLM)xai
معرفی و مستندات مدل هوش مصنوعی grok-4-fast-non-reasoning
مستندات مدل grok-4-fast-non-reasoning ارائه شده توسط ای آی کار (AI-KAR)
معرفی و بررسی فنی
⚡ وضعیت پشتیبانی از زبان فارسی
این مدل از زبان فارسی به صورت متوسط پشتیبانی میکند.
مدل grok-4-fast-non-reasoning یک مدل چندوجهی ارائه شده توسط xAI است که به منظور ارائه کارایی هزینه بهینه و پنجره متنی 2M-token طراحی شده است. این مدل، نسخه غیر استدلالی (Non-reasoning variant) از خانواده grok است و برای انجام وظایفی که نیاز به استدلال پیچیده ندارند، بسیار مناسب است. این مدل با هدف ارائه پاسخهای سریع و کارآمد به سوالات و درخواستهای کاربران طراحی شده است. از جمله کاربردهای اصلی این مدل میتوان به پاسخگویی به سوالات متداول، تولید متنهای کوتاه، خلاصه سازی متون، و انجام وظایف مرتبط با پردازش زبان طبیعی اشاره کرد. به دلیل کارایی بالای این مدل، میتوان از آن در برنامههای کاربردی مختلفی استفاده کرد که نیاز به پاسخگویی سریع و با کمترین هزینه دارند. این مدل به خوبی میتواند در محیطهای با حجم بالای درخواستها عمل کند و پاسخهای مناسب را در زمان کوتاهی ارائه دهد. همچنین، این مدل قابلیت ادغام با سایر سیستمها و APIها را داراست و میتواند به عنوان یک جزء اصلی در سیستمهای هوشمند مورد استفاده قرار گیرد. با توجه به پنجره متنی 2M-token، این مدل قادر است اطلاعات زیادی را در حافظه خود نگه دارد و در پاسخگویی به سوالات، از این اطلاعات بهره ببرد. این ویژگی به ویژه در مواردی که نیاز به درک عمیقتری از متن ورودی است، بسیار مفید است. به طور خلاصه، مدل grok-4-fast-non-reasoning یک ابزار قدرتمند و کارآمد برای انجام وظایف پردازش زبان طبیعی است که با هدف ارائه سرعت و کارایی بالا طراحی شده است. این مدل میتواند در برنامههای کاربردی مختلفی مورد استفاده قرار گیرد و به بهبود عملکرد و کاهش هزینهها کمک کند. این مدل برای استفاده در محیطهای تجاری و صنعتی که نیاز به پردازش سریع و کارآمد دادهها دارند، بسیار مناسب است. تیم ای آی کار (AI-KAR) این مدل را به عنوان یکی از بهترین گزینهها برای انجام وظایف پردازش زبان طبیعی به کاربران خود پیشنهاد میکند.
مشخصات فنی (API References)
| پارامتر | نوع | توضیحات و مقادیر |
|---|---|---|
model | stringRequired | مدل مورد استفاده. مقدار این فیلد باید x-ai/grok-4-fast-non-reasoning باشد. مقادیر مجاز (کلیک برای کپی): |
messages | one of[]Required | لیستی از پیامها که مکالمه را تا به اینجا تشکیل میدهند. بسته به مدلی که استفاده میکنید، انواع مختلف پیامها (modalities) مانند متن، اسناد (txt، pdf)، تصاویر و صدا پشتیبانی میشوند. |
max_completion_tokens | integer | حد بالایی برای تعداد توکنهایی که میتوان برای تکمیل تولید کرد، از جمله توکنهای خروجی قابل مشاهده و توکنهای استدلال. حداقل مقدار: 1 |
max_tokens | number | حداکثر تعداد توکنهایی که میتوان در تکمیل چت تولید کرد. این مقدار میتواند برای کنترل هزینههای متن تولید شده از طریق API استفاده شود. حداقل مقدار: 1 |
stream | boolean | اگر روی True تنظیم شود، دادههای پاسخ مدل به صورت جریانی با استفاده از رویدادهای ارسال شده توسط سرور (server-sent events) به کلاینت ارسال میشوند. مقدار پیشفرض: false |
stream_options | object | تنظیمات مربوط به استریم کردن |
temperature | number | چه دمای نمونهبرداری (sampling temperature) استفاده شود. مقادیر بالاتر مانند 0.8 خروجی را تصادفیتر میکنند، در حالی که مقادیر پایینتر مانند 0.2 خروجی را متمرکزتر و قطعیتر میکنند. به طور کلی توصیه میکنیم این مقدار یا top_p را تغییر دهید، اما نه هر دو را. |
top_p | number | جایگزینی برای نمونهبرداری با دما، به نام نمونهبرداری هستهای (nucleus sampling)، که در آن مدل نتایج توکنها را با جرم احتمال top_p در نظر میگیرد. بنابراین 0.1 به این معنی است که فقط توکنهایی که شامل 10٪ جرم احتمال برتر هستند در نظر گرفته میشوند. به طور کلی توصیه میکنیم این مقدار یا temperature را تغییر دهید، اما نه هر دو را. حداقل مقدار: 0.01، حداکثر مقدار: 1 |
seed | integer | این ویژگی در حالت بتا است. اگر مشخص شود، سیستم ما تمام تلاش خود را میکند تا به صورت قطعی نمونهبرداری کند، به طوری که درخواستهای مکرر با همان seed و پارامترها باید نتیجه یکسانی را برگردانند. حداقل مقدار: 1 |
top_k | number | فقط از K گزینه برتر برای هر توکن بعدی نمونهبرداری کنید. برای حذف پاسخهای با احتمال کم "long tail" استفاده میشود. فقط برای موارد استفاده پیشرفته توصیه میشود. معمولاً فقط باید از temperature استفاده کنید. |
repetition_penalty | number | عددی که تنوع متن تولید شده را با کاهش احتمال تکرار توالیها کنترل میکند. مقادیر بالاتر تکرار را کاهش میدهند. |
top_a | number | پارامتر نمونهبرداری برتر جایگزین. حداکثر مقدار: 1 |
prediction | object | پیکربندی برای خروجی پیشبینیشده، که میتواند زمان پاسخ را در زمانی که بخشهای بزرگی از پاسخ مدل از قبل مشخص هستند، بسیار بهبود بخشد. |
tools | object[] | لیستی از ابزارهایی که مدل ممکن است فراخوانی کند. در حال حاضر، فقط توابع به عنوان ابزار پشتیبانی میشوند. از این برای ارائه لیستی از توابعی که مدل ممکن است ورودیهای JSON را برای آنها تولید کند، استفاده کنید. حداکثر 128 تابع پشتیبانی میشود. |
tool_choice | any of | کنترل میکند که کدام ابزار (در صورت وجود) توسط مدل فراخوانی شود. none به این معنی است که مدل هیچ ابزاری را فراخوانی نمیکند و در عوض یک پیام تولید میکند. auto به این معنی است که مدل میتواند بین تولید یک پیام یا فراخوانی یک یا چند ابزار انتخاب کند. required به این معنی است که مدل باید یک یا چند ابزار را فراخوانی کند. تعیین یک ابزار خاص از طریق {"type": "function", "function": {"name": "my_function"}} مدل را مجبور میکند تا آن ابزار را فراخوانی کند. none مقدار پیشفرض زمانی است که هیچ ابزاری وجود نداشته باشد. auto مقدار پیشفرض در صورت وجود ابزار است. مقادیر مجاز (کلیک برای کپی): |
parallel_tool_calls | boolean | فعال کردن یا غیرفعال کردن فراخوانی موازی توابع در هنگام استفاده از ابزار. |
logprobs | boolean | اینکه آیا احتمال لگاریتمی (log probabilities) توکنهای خروجی برگردانده شود یا خیر. اگر True باشد، احتمال لگاریتمی هر توکن خروجی که در محتوای پیام برگردانده شده است را برمیگرداند. |
top_logprobs | number | یک عدد صحیح بین 0 و 20 که تعداد محتملترین توکنها را برای بازگشت در هر موقعیت توکن مشخص میکند، که هر کدام دارای یک احتمال لگاریتمی مرتبط هستند. اگر این پارامتر استفاده شود، logprobs باید روی True تنظیم شود. |
نمونه کدهای درخواست
نکته مهم برای توسعهدهندگان:
برای احراز هویت، حتما کلید API خود را جایگزین YOUR_API_KEY کنید. هدر Authorization الزامی است.
import requests
import json # for getting a structured output with indentation
response = requests.post(
"https://api.ai-kar.com/v1/chat/completions",
headers={
# Insert your AI-KAR API Key instead of <YOUR_AI-KARAPI_KEY>:
"Authorization":"Bearer <YOUR_AI-KARAPI_KEY>",
"Content-Type":"application/json"
},
json={
"model":"x-ai/grok-4-fast-non-reasoning",
"messages":[
{
"role":"user",
"content":"Hello" # insert your prompt here, instead of Hello
}
]
}
)
data = response.json()
print(json.dumps(data, indent=2, ensure_ascii=False))نمونه پاسخ موفق (JSON)
RESPONSE (200 OK)
{
"id": "text",
"object": "text",
"created": 1,
"choices": [
{
"index": 1,
"message": {
"role": "text",
"content": "text",
"refusal": null,
"annotations": [
{
"type": "text",
"url_citation": {
"end_index": 1,
"start_index": 1,
"title": "text",
"url": "text"
}
}
],
"audio": {
"id": "text",
"data": "text",
"transcript": "text",
"expires_at": 1
},
"tool_calls": [
{
"id": "text",
"type": "text",
"function": {
"arguments": "text",
"name": "text"
}
}
]
},
"finish_reason": "stop",
"logprobs": {
"content": [
{
"bytes": [
1
],
"logprob": 1,
"token": "text",
"top_logprobs": [
{
"bytes": [
1
],
"logprob": 1,
"token": "text"
}
]
}
],
"refusal": []
}
}
],
"model": "text",
"usage": {
"prompt_tokens": 1,
"completion_tokens": 1,
"total_tokens": 1,
"completion_tokens_details": {
"accepted_prediction_tokens": 1,
"audio_tokens": 1,
"reasoning_tokens": 1,
"rejected_prediction_tokens": 1
},
"prompt_tokens_details": {
"audio_tokens": 1,
"cached_tokens": 1
}
}
}