Text Models (LLM)openai

معرفی و مستندات مدل هوش مصنوعی gpt-3.5-turbo

مستندات مدل gpt-3.5-turbo ارائه شده توسط ای آی کار (AI-KAR)

معرفی و بررسی فنی

⚡ وضعیت پشتیبانی از زبان فارسی

این مدل از زبان فارسی به صورت متوسط پشتیبانی می‌کند و در درک متون پیچیده و اصطلاحات تخصصی ممکن است با مشکل مواجه شود.

مدل gpt-3.5-turbo، توسعه یافته بر اساس قابلیت‌های نسخه‌های پیشین، درک و تولید زبان طبیعی بهبود یافته‌ای را برای مکالمات واقعی‌تر و مرتبط با زمینه ارائه می‌دهد. این مدل در رسیدگی به طیف گسترده‌ای از سناریوهای مکالمه برتری دارد و پاسخ‌هایی ارائه می‌دهد که نه تنها دقیق هستند، بلکه از نظر متنی نیز مناسب می‌باشند. این مدل می‌تواند در موارد زیر استفاده شود:
  • پاسخگویی به سوالات
  • تولید متن
  • خلاصه سازی متون طولانی
  • ترجمه زبان
  • تولید کد
  • چت بات

برای شروع استفاده از این مدل، ابتدا باید یک حساب کاربری در وب‌سایت ای آی کار (AI-KAR) ایجاد کنید. پس از ورود به سیستم، به داشبورد حساب کاربری خود رفته و کلید API خود را تولید کنید. اطمینان حاصل کنید که این کلید در رابط کاربری فعال شده باشد. سپس، یک نمونه کد را از انتهای صفحه کپی کرده و آن را در محیط توسعه خود قرار دهید. کلید API تولید شده را در کد جایگذاری کنید. سوال یا درخواست خود را در فیلد `content` وارد کنید. این همان چیزی است که مدل به آن پاسخ خواهد داد. در صورت نیاز، سایر پارامترهای اختیاری را نیز تنظیم کنید. پارامترهای `model` و `messages` پارامترهای اجباری برای این مدل هستند. پس از انجام تغییرات، کد را در محیط توسعه خود اجرا کنید. زمان پاسخگویی به عوامل مختلفی بستگی دارد، اما برای درخواست‌های ساده به ندرت از چند ثانیه تجاوز می‌کند.

مشخصات فنی (API References)

پارامترنوعتوضیحات و مقادیر
model
stringRequired
شناسه مدل مورد استفاده برای تولید پاسخ. مقادیر مجاز: gpt-3.5-turbo، gpt-3.5-turbo-0125، gpt-3.5-turbo-1106
مقادیر مجاز (کلیک برای کپی):
messages
arrayRequired
لیستی از پیام‌ها که مکالمه تا کنون را تشکیل می‌دهند. بسته به مدلی که استفاده می‌کنید، انواع مختلف پیام ( modalities ) مانند متن، اسناد ( txt, pdf )، تصاویر و صدا پشتیبانی می‌شوند.
max_completion_tokens
integer
حد بالایی برای تعداد توکن‌هایی که می‌توان برای تکمیل تولید کرد، از جمله توکن‌های خروجی قابل مشاهده و توکن‌های استدلال. حداقل مقدار: 1
max_tokens
number
حداکثر تعداد توکن‌هایی که می‌توان در تکمیل چت ایجاد کرد. این مقدار می‌تواند برای کنترل هزینه‌های متن تولید شده از طریق API استفاده شود. حداقل مقدار: 1
stream
boolean
اگر روی True تنظیم شود، داده‌های پاسخ مدل به صورت جریانی با استفاده از رویدادهای ارسال شده توسط سرور به کلاینت ارسال می‌شوند. مقدار پیش فرض: false
stream_options
object
تنظیمات مربوط به استریم کردن پاسخ
tools
array
لیستی از ابزارهایی که مدل ممکن است فراخوانی کند. در حال حاضر، فقط توابع به عنوان ابزار پشتیبانی می‌شوند. از این برای ارائه لیستی از توابعی استفاده کنید که مدل ممکن است ورودی‌های JSON را برای آنها تولید کند. حداکثر 128 تابع پشتیبانی می‌شود.
tool_choice
any
کنترل می‌کند که کدام ابزار (در صورت وجود) توسط مدل فراخوانی شود. none به این معنی است که مدل هیچ ابزاری را فراخوانی نمی‌کند و در عوض یک پیام تولید می‌کند. auto به این معنی است که مدل می‌تواند بین تولید یک پیام یا فراخوانی یک یا چند ابزار انتخاب کند. required به این معنی است که مدل باید یک یا چند ابزار را فراخوانی کند. تعیین یک ابزار خاص از طریق {"type": "function", "function": {"name": "my_function"}} مدل را مجبور می‌کند تا آن ابزار را فراخوانی کند. none مقدار پیش فرض است زمانی که هیچ ابزاری وجود نداشته باشد. auto مقدار پیش فرض است اگر ابزارها وجود داشته باشند.
مقادیر مجاز (کلیک برای کپی):
parallel_tool_calls
boolean
تعیین اینکه آیا فراخوانی موازی تابع در طول استفاده از ابزار فعال شود یا خیر.
n
integer
تعداد انتخاب‌های تکمیل چت که برای هر پیام ورودی تولید می‌شود. توجه داشته باشید که هزینه شما بر اساس تعداد توکن‌های تولید شده در تمام انتخاب‌ها محاسبه می‌شود. مقدار n را 1 نگه دارید تا هزینه‌ها به حداقل برسد.
stop
any
حداکثر 4 دنباله که API تولید توکن‌های بیشتر را متوقف می‌کند. متن بازگشتی شامل دنباله توقف نخواهد بود.
logprobs
boolean
تعیین اینکه آیا احتمالات لگاریتمی توکن‌های خروجی برگردانده شوند یا خیر. اگر True باشد، احتمالات لگاریتمی هر توکن خروجی که در محتوای پیام برگردانده شده است را برمی‌گرداند.
top_logprobs
number
یک عدد صحیح بین 0 و 20 که تعداد محتمل‌ترین توکن‌ها را برای بازگشت در هر موقعیت توکن مشخص می‌کند، هر کدام با یک احتمال لگاریتمی مرتبط. اگر این پارامتر استفاده شود، logprobs باید روی True تنظیم شود.
logit_bias
object
احتمال ظاهر شدن توکن‌های مشخص شده در تکمیل را تغییر دهید. یک شی JSON را می‌پذیرد که توکن‌ها (مشخص شده توسط شناسه توکن آنها در توکن‌ساز) را به یک مقدار بایاس مرتبط از -100 تا 100 نگاشت می‌کند. از نظر ریاضی، بایاس به logits تولید شده توسط مدل قبل از نمونه‌برداری اضافه می‌شود. اثر دقیق در هر مدل متفاوت خواهد بود، اما مقادیر بین -1 و 1 باید احتمال انتخاب را کاهش یا افزایش دهند. مقادیری مانند -100 یا 100 باید منجر به ممنوعیت یا انتخاب انحصاری توکن مربوطه شوند.
frequency_penalty
number
عدد بین -2.0 و 2.0. مقادیر مثبت توکن‌های جدید را بر اساس فراوانی موجود آنها در متن تا کنون جریمه می‌کنند و احتمال تکرار عین به عین همان خط توسط مدل را کاهش می‌دهند.
presence_penalty
number
مقادیر مثبت توکن‌های جدید را بر اساس اینکه آیا در متن تا کنون ظاهر شده‌اند یا خیر جریمه می‌کنند و احتمال صحبت کردن مدل در مورد موضوعات جدید را افزایش می‌دهند.
seed
integer
این ویژگی در نسخه بتا است. اگر مشخص شود، سیستم ما تمام تلاش خود را می‌کند تا به طور قطعی نمونه‌برداری کند، به طوری که درخواست‌های مکرر با همان seed و پارامترها باید همان نتیجه را برگردانند. حداقل مقدار: 1
temperature
number
از چه دمای نمونه‌برداری استفاده شود. مقادیر بالاتر مانند 0.8 خروجی را تصادفی‌تر می‌کنند، در حالی که مقادیر پایین‌تر مانند 0.2 آن را متمرکزتر و قطعی‌تر می‌کنند. ما به طور کلی توصیه می‌کنیم این یا top_p را تغییر دهید اما نه هر دو را.
top_p
number
جایگزینی برای نمونه‌برداری با دما، به نام نمونه‌برداری هسته‌ای، که در آن مدل نتایج توکن‌ها را با جرم احتمال top_p در نظر می‌گیرد. بنابراین 0.1 به این معنی است که فقط توکن‌هایی که 10٪ جرم احتمال برتر را تشکیل می‌دهند در نظر گرفته می‌شوند. ما به طور کلی توصیه می‌کنیم این یا temperature را تغییر دهید اما نه هر دو را.
response_format
any
شیئی که فرمتی را مشخص می‌کند که مدل باید خروجی دهد.

نمونه کدهای درخواست

نکته مهم برای توسعه‌دهندگان:

برای احراز هویت، حتما کلید API خود را جایگزین YOUR_API_KEY کنید. هدر Authorization الزامی است.

import requests
import json

url = 'https://api.ai-kar.com/v1/chat/completions'
headers = {
    'Authorization': 'Bearer <YOUR_AI-KARAPI_KEY>',
    'Content-Type': 'application/json'
}
data = {
    'model': 'gpt-3.5-turbo',
    'messages': [
        {
            'role': 'user',
            'content': 'Hello'
        }
    ]
}

response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json())

نمونه پاسخ موفق (JSON)

RESPONSE (200 OK)
{
  "id": "text",
  "object": "text",
  "created": 1,
  "choices": [
    {
      "index": 1,
      "message": {
        "role": "text",
        "content": "text",
        "refusal": null,
        "annotations": [
          {
            "type": "text",
            "url_citation": {
              "end_index": 1,
              "start_index": 1,
              "title": "text",
              "url": "text"
            }
          }
        ],
        "audio": {
          "id": "text",
          "data": "text",
          "transcript": "text",
          "expires_at": 1
        },
        "tool_calls": [
          {
            "id": "text",
            "type": "text",
            "function": {
              "arguments": "text",
              "name": "text"
            }
          }
        ]
      },
      "finish_reason": "stop",
      "logprobs": {
        "content": [
          {
            "bytes": [
              1
            ],
            "logprob": 1,
            "token": "text",
            "top_logprobs": [
              {
                "bytes": [
                  1
                ],
                "logprob": 1,
                "token": "text"
              }
            ]
          }
        ],
        "refusal": []
      }
    }
  ],
  "model": "text",
  "usage": {
    "prompt_tokens": 1,
    "completion_tokens": 1,
    "total_tokens": 1,
    "completion_tokens_details": {
      "accepted_prediction_tokens": 1,
      "audio_tokens": 1,
      "reasoning_tokens": 1,
      "rejected_prediction_tokens": 1
    },
    "prompt_tokens_details": {
      "audio_tokens": 1,
      "cached_tokens": 1
    }
  }
}