Text Models (LLM)meta
معرفی و مستندات مدل هوش مصنوعی meta-llama-3.1-8b-instruct-turbo
مستندات مدل meta-llama-3.1-8b-instruct-turbo ارائه شده توسط ای آی کار (AI-KAR)
معرفی و بررسی فنی
⚡ وضعیت پشتیبانی از زبان فارسی
این مدل از زبان فارسی به صورت متوسط پشتیبانی میکند.
مدل meta-llama-3.1-8b-instruct-turbo یک مدل زبانی پیشرفته است که برای تولید متن با کیفیت بالا طراحی شده است. این مدل برای کاربردهای حرفهای و صنعتی که نیازمند منابع GPU گسترده هستند، بهینه شده است. این مدل میتواند در زمینههای مختلفی از جمله تولید محتوا، پاسخگویی به سوالات، ترجمه زبان، خلاصه سازی متون و تولید کد مورد استفاده قرار گیرد. با توجه به معماری پیشرفته و آموزش داده شده بر روی مجموعه دادههای بزرگ، این مدل قادر است متونی منسجم، خلاقانه و مرتبط با موضوع تولید کند. کاربران میتوانند با استفاده از API ارائه شده توسط ای آی کار (AI-KAR) به این مدل دسترسی پیدا کنند و از قابلیتهای آن در پروژههای خود بهره ببرند. برای استفاده از این مدل، ابتدا باید یک حساب کاربری در وبسایت ای آی کار ایجاد کرده و یک کلید API تولید کنید. سپس میتوانید با استفاده از زبانهای برنامهنویسی مختلف مانند پایتون، جاوا اسکریپت، cURL و HTTP درخواستهای خود را به API ارسال کنید. پارامترهای مختلفی برای کنترل رفتار مدل در دسترس هستند، از جمله `model`، `messages`، `max_tokens`، `stream`، `temperature` و `top_p`. با تنظیم این پارامترها میتوانید خروجی مدل را بهینه کرده و به نتایج دلخواه خود برسید. مدل meta-llama-3.1-8b-instruct-turbo یک ابزار قدرتمند برای تولید متن است که میتواند به شما در انجام وظایف مختلف کمک کند. این مدل به طور مداوم در حال بهبود است و قابلیتهای جدیدی به آن اضافه میشود. برای اطلاع از آخرین تغییرات و بهروزرسانیها، به مستندات API ای آی کار مراجعه کنید. این مدل به ویژه برای توسعه دهندگان و شرکتهایی که به دنبال راهکارهای هوش مصنوعی برای تولید محتوا و اتوماسیون فرآیندهای خود هستند، مناسب است. با استفاده از این مدل میتوانید به طور قابل توجهی در زمان و هزینه صرفهجویی کنید و کیفیت خروجیهای خود را افزایش دهید. ای آی کار (AI-KAR) متعهد است که بهترین خدمات و پشتیبانی را به کاربران خود ارائه دهد و به آنها در استفاده از این مدل قدرتمند کمک کند.
مشخصات فنی (API References)
| پارامتر | نوع | توضیحات و مقادیر |
|---|---|---|
model | stringRequired | مدل مورد استفاده برای تولید پاسخ. مقدار این پارامتر باید `meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo` باشد. مقادیر مجاز (کلیک برای کپی): |
messages | one of[]Required | لیستی از پیامها که مکالمه را تا به اینجا تشکیل میدهند. بسته به مدلی که استفاده میکنید، انواع مختلفی از پیامها (modalities) مانند متن، اسناد (txt, pdf)، تصاویر و صدا پشتیبانی میشوند. |
max_tokens | number | حداکثر تعداد توکنهایی که میتوانند در تکمیل چت تولید شوند. این مقدار میتواند برای کنترل هزینههای متن تولید شده از طریق API استفاده شود. |
stream | boolean | اگر روی True تنظیم شود، دادههای پاسخ مدل به صورت جریانی (stream) به کلاینت ارسال میشوند، به این صورت که با تولید هر بخش از پاسخ، آن بخش بلافاصله ارسال میشود. |
stream_options | object | تنظیمات مربوط به جریان داده (streaming). |
tools | object[] | لیستی از ابزارهایی که مدل ممکن است فراخوانی کند. در حال حاضر، فقط توابع به عنوان ابزار پشتیبانی میشوند. از این پارامتر برای ارائه لیستی از توابعی استفاده کنید که مدل میتواند ورودیهای JSON را برای آنها تولید کند. حداکثر 128 تابع پشتیبانی میشود. |
tool_choice | any of | کنترل میکند که کدام ابزار (در صورت وجود) توسط مدل فراخوانی شود. `none` به این معنی است که مدل هیچ ابزاری را فراخوانی نمیکند و به جای آن یک پیام تولید میکند. `auto` به این معنی است که مدل میتواند بین تولید یک پیام یا فراخوانی یک یا چند ابزار انتخاب کند. `required` به این معنی است که مدل باید یک یا چند ابزار را فراخوانی کند. تعیین یک ابزار خاص از طریق `{"type": "function", "function": {"name": "my_function"}}` مدل را مجبور میکند که آن ابزار را فراخوانی کند. `none` مقدار پیشفرض است زمانی که هیچ ابزاری وجود نداشته باشد. `auto` مقدار پیشفرض است اگر ابزارهایی وجود داشته باشند. مقادیر مجاز (کلیک برای کپی): |
parallel_tool_calls | boolean | تعیین اینکه آیا فراخوانی موازی توابع در هنگام استفاده از ابزار فعال باشد یا خیر. |
echo | boolean | اگر True باشد، پاسخ شامل prompt خواهد بود. میتواند با logprobs برای برگرداندن prompt logprobs استفاده شود. |
temperature | number | از چه دمای نمونهبرداری استفاده شود. مقادیر بالاتر مانند 0.8 خروجی را تصادفیتر میکنند، در حالی که مقادیر پایینتر مانند 0.2 آن را متمرکزتر و قطعیتر میکنند. ما عموماً توصیه میکنیم این مقدار یا top_p را تغییر دهید، اما نه هر دو را. |
top_p | number | جایگزینی برای نمونهبرداری با دما، به نام نمونهبرداری هستهای (nucleus sampling)، که در آن مدل نتایج توکنها را با جرم احتمال top_p در نظر میگیرد. بنابراین 0.1 به این معنی است که فقط توکنهایی که شامل 10٪ جرم احتمال برتر هستند در نظر گرفته میشوند. ما عموماً توصیه میکنیم این مقدار یا temperature را تغییر دهید، اما نه هر دو را. |
n | integer | چند انتخاب تکمیل چت برای هر پیام ورودی تولید شود. توجه داشته باشید که هزینه شما بر اساس تعداد توکنهای تولید شده در تمام انتخابها محاسبه میشود. مقدار n را 1 نگه دارید تا هزینهها به حداقل برسد. |
stop | any of | حداکثر 4 دنباله که API تولید توکنهای بیشتر را متوقف میکند. متن برگشتی شامل دنباله توقف نخواهد بود. |
logprobs | boolean | اینکه آیا احتمالات لگاریتمی توکنهای خروجی برگردانده شوند یا خیر. اگر True باشد، احتمالات لگاریتمی هر توکن خروجی که در محتوای پیام برگردانده شده است را برمیگرداند. |
top_logprobs | number | یک عدد صحیح بین 0 و 20 که تعداد محتملترین توکنها را برای بازگشت در هر موقعیت توکن مشخص میکند، هر کدام با یک احتمال لگاریتمی مرتبط. اگر این پارامتر استفاده شود، logprobs باید روی True تنظیم شود. |
logit_bias | object | احتمال ظاهر شدن توکنهای مشخص شده در تکمیل را تغییر میدهد. یک شی JSON را میپذیرد که توکنها (مشخص شده توسط شناسه توکن آنها در توکنایزر) را به یک مقدار بایاس مرتبط از -100 تا 100 نگاشت میکند. از نظر ریاضی، بایاس به logits تولید شده توسط مدل قبل از نمونهبرداری اضافه میشود. اثر دقیق بر اساس مدل متفاوت خواهد بود، اما مقادیر بین -1 و 1 باید احتمال انتخاب را کاهش یا افزایش دهند. مقادیری مانند -100 یا 100 باید منجر به ممنوعیت یا انتخاب انحصاری توکن مربوطه شوند. |
frequency_penalty | number | عددی بین -2.0 و 2.0. مقادیر مثبت، توکنهای جدید را بر اساس فراوانی موجود آنها در متن تا کنون جریمه میکنند، و احتمال تکرار عین به عین یک خط توسط مدل را کاهش میدهند. |
prediction | object | پیکربندی برای یک خروجی پیشبینیشده، که میتواند زمان پاسخ را در زمانی که بخشهای بزرگی از پاسخ مدل از قبل مشخص هستند، بسیار بهبود بخشد. |
presence_penalty | number | مقادیر مثبت، توکنهای جدید را بر اساس اینکه آیا در متن تا کنون ظاهر شدهاند یا خیر جریمه میکنند، و احتمال صحبت کردن مدل در مورد موضوعات جدید را افزایش میدهند. |
seed | integer | این ویژگی در حالت بتا است. اگر مشخص شود، سیستم ما تمام تلاش خود را میکند تا به طور قطعی نمونهبرداری کند، به طوری که درخواستهای مکرر با همان seed و پارامترها باید نتیجه یکسانی را برگردانند. |
min_p | number | عددی بین 0.001 و 0.999 که میتواند به عنوان جایگزینی برای top_p و top_k استفاده شود. |
top_k | number | فقط از K گزینه برتر برای هر توکن بعدی نمونهبرداری کنید. برای حذف پاسخهای «دنباله بلند» با احتمال کم استفاده میشود. فقط برای موارد استفاده پیشرفته توصیه میشود. معمولاً فقط باید از temperature استفاده کنید. |
repetition_penalty | number | عددی که تنوع متن تولید شده را با کاهش احتمال تکرار دنبالههای تکراری کنترل میکند. مقادیر بالاتر تکرار را کاهش میدهند. |
نمونه کدهای درخواست
نکته مهم برای توسعهدهندگان:
برای احراز هویت، حتما کلید API خود را جایگزین YOUR_API_KEY کنید. هدر Authorization الزامی است.
import requests
import json # for getting a structured output with indentation
response = requests.post(
"https://api.ai-kar.com/v1/chat/completions",
headers={
# Insert your AI-KAR API Key instead of <YOUR_AI-KARAPI_KEY>:
"Authorization":"Bearer <YOUR_AI-KARAPI_KEY>",
"Content-Type":"application/json"
},
json={
"model":"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
"messages":[
{
"role":"user",
"content":"Hello" # insert your prompt here, instead of Hello
}
],
}
)
data = response.json()
print(json.dumps(data, indent=2, ensure_ascii=False))نمونه پاسخ موفق (JSON)
RESPONSE (200 OK)
{
"id": "text",
"object": "text",
"created": 1,
"choices": [
{
"index": 1,
"message": {
"role": "text",
"content": "text",
"refusal": null,
"annotations": [
{
"type": "text",
"url_citation": {
"end_index": 1,
"start_index": 1,
"title": "text",
"url": "text"
}
}
],
"audio": {
"id": "text",
"data": "text",
"transcript": "text",
"expires_at": 1
},
"tool_calls": [
{
"id": "text",
"type": "text",
"function": {
"arguments": "text",
"name": "text"
}
}
]
},
"finish_reason": "stop",
"logprobs": {
"content": [
{
"bytes": [
1
],
"logprob": 1,
"token": "text",
"top_logprobs": [
{
"bytes": [
1
],
"logprob": 1,
"token": "text"
}
]
}
],
"refusal": []
}
}
],
"model": "text",
"usage": {
"prompt_tokens": 1,
"completion_tokens": 1,
"total_tokens": 1,
"completion_tokens_details": {
"accepted_prediction_tokens": 1,
"audio_tokens": 1,
"reasoning_tokens": 1,
"rejected_prediction_tokens": 1
},
"prompt_tokens_details": {
"audio_tokens": 1,
"cached_tokens": 1
}
}
}